MATH 2060 TUTOII

$$s_n(x) := \int_0^x c_n(t) dt, \quad c_{n+1}(x) := 1 + \int_0^x s_n(t) dt$$
 (**)

for all $n \in \mathbb{N}$, $x \in \mathbb{R}$. Reason as in the proof of Theorem 8.4.1 to conclude that there exist ______ functions $c : \mathbb{R} \to \mathbb{R}$ and $s : \mathbb{R} \to \mathbb{R}$ such that (j) c''(x) = c(x) and s''(x) = s(x) for all $x \in \mathbb{R}$, and (jj) c(0) = 1, c'(0) = 0 and s(0) = 0, s'(0) = 1. Moreover, c'(x) = s(x) and s'(x) = c(x) -______ for all $x \in \mathbb{R}$.

Ans: () By induction, each
$$C_n$$
, S_n are cts on \mathbb{R} , and hence
integrable on any bounded intervals.
So they are all well-defined by (\mathbf{x}) .
By FTC, S_n , C_{nt_1} are diff. at every pl and that
 $S_n'(\mathbf{x}) = C_n(\mathbf{x})$, $C_{nt_1}(\mathbf{x}) = S_n(\mathbf{x})$ $\forall n \in \mathbb{N}$, $\forall \mathbf{x} \in \mathbb{R}$
Induction also shows that
 $C_{nt_1}(\mathbf{x}) = 1 + \frac{\mathbf{x}^2}{21} + \frac{\mathbf{x}^4}{41} + \dots + \frac{\mathbf{x}^{2n}}{(2n+1)!}$

Since
$$\lim_{n \to \infty} \frac{A^{n}}{(n+1)!} + \frac{16}{15} = 0$$
, it follows from Cauchy Catalian that
(Ch) converges uniformly on [-A, A], when $A > 0$ is adotrow.
In particular, (Ch(x)) converges $\forall x \in \mathbb{R}$.
Define C: $\mathbb{R} \to \mathbb{R}$ by $C(x) = \lim_{n \to \infty} C_n(x)$
Since Cricts and $C_n \Rightarrow C$ on [-A, A], $\forall A > 0$.
So C is cts on [-A, A], $\forall A > 0$.
 $\Rightarrow C$ is cts on \mathbb{R} .
Also $C_n(b) = 1 \forall n \in \mathbb{N} \Rightarrow C(b) = 1$.
 $O[OH, if |x| \le A$ and $m \ge A \ge 2A$, then
 $|S_n(x) - S_n(x)| = |\int_0^{x} C_n(t) - C_n(t)| dt|$
 $\leq A \cdot (\frac{A^{2n}}{C_n(x) - t_1})$
 $Define S: \mathbb{R} \to \mathbb{R}$ by $S(x) = \lim_{n \to \infty} J_n(x)$.
It follows that S is cts on \mathbb{R} and $S(0) = 0$
 \bigotimes Sime $\forall A > 0$, $C_n = C$ on $[-A, A]$.
 $D_1 = \sum_{n \to \infty} J_n(x) = \lim_{n \to \infty} J_n(x)$.
 $The follows that S is cts on \mathbb{R} and $S(0) = 0$
 \bigotimes Sime $\forall A > 0$, $\Omega = C_n = C$ on $[-A, A]$.
 $D_2 = \sum_{n \to \infty} J_n(x) = \lim_{n \to \infty} J_n(x)$.
 $The follows that S is cts on \mathbb{R} and $S(0) = 0$
 \bigotimes Sime $\forall A > 0$, $\Omega = \lim_{n \to \infty} J_n(x) = \lim_{n \to \infty} J_n(x)$.
 $J_n(x) = S(x) = \forall x \in [-A, A]$.
 $S_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = \int_{\mathbb{R}} J_n(x) = J_n(x) = J_n(x)$.
 $J_n(x) = = J_n(x$$$

7. Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they satisfy the identity (c(x))² - (s(x))² = 1 for all x ∈ ℝ. Moreover, they are the unique functions satisfying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine functions, respectively.)

Ans: · Since c'=s and s'=c, it follows from induction that C, s have derivatives of all orders. · Observe that $\frac{d}{dx}\left[\left(c(x)\right)^{2} - \left(s(x)\right)^{2}\right] = 2c(x)s(x) - 2s(x)c(x) = 0$ Thus (c(x)) - (s(x)) is a constant for whose value is $(c(0))^2 - (s(0))^2 = 1 - 0 = 1$. • Let C_i , C_i be 2 forms s.t. j) $C''_i = C_i$ ij; $C_i(0) = 1$, $C'_i(0) = 0$ Let $q = c_1 - c_2$ Then $\varphi''(x) = \varphi(x) \quad \forall x \in \mathbb{R}$, and $\varphi(o) = \varphi^{k}(o) = O \quad \forall k \in \mathbb{N}$. Fix x & R Sol. Let Ix = [0, x] if x >0; [x, o] if x < 0 $B_{Y} T_{AY|OV'S} Thm, \forall n \in \mathbb{N}, \exists C_{n} \in I_{X} s.t$ $\varphi(x) = \sum_{k=1}^{\infty} \frac{\varphi^{k}(o)}{k!} x^{k} + \frac{\varphi^{in}(C_{n})}{n!} x^{n} = \frac{\varphi^{in}(C_{n})}{n!} x^{n}$ Since le l'ane cte on Ix, 3 K 70 S.t. $|\varphi(t)|, |\varphi'(t)| \leq |\zeta | \forall t \in I_x$ = $|\varphi''(t)| \leq k \quad \forall t \in I_k$ Thus $|Q(x)| \leq k \frac{|x|^n}{n!} \quad \forall n \in \mathbb{N}.$ Sime $\lim_{n \to \infty} \frac{|x|^n}{n!} = 0$, we conclude that $\varphi(x) = 0$. Therefore $Q \equiv O$. i.e. $C_1(x) = C_1(x) \forall x \in \mathbb{R}$

- \$9.1
 - 2. Show that if a series is conditionally convergent, then the series obtained from its positive terms is divergent, and the series obtained from its negative terms is divergent.

Ans: Let I an be a series that is conditionally convergent. I.e. I an is convergent, but not absolutely convergent. Set $p_n = \frac{1}{2}(a_n + |a_n|) = \begin{cases} a_n & \text{if } a_n > 0 \end{cases}$ otherwise $g_n = \frac{1}{2}(a_n - |a_n|) = \begin{cases} a_n & \text{if } a_n < D \end{cases}$ otherwise Then $a_n = p_n + q_n$ and $|a_n| = p_n - q_n = 2p_n - a_n$ Since Σa_n is convergent, but Σa_n is divergent, we must have Σp_n divergent also (Otherwise, Σa_n) = $2\Sigma p_n - \Sigma a_n$ is convergent) Note $|a_n| = a_n - 2g_n$. So I gn is divergent similarly

6. Find an explicit expression for the *n*th partial sum of $\sum_{n=2}^{\infty} \ln(1-1/n^2)$ to show that this series converges to $-\ln 2$. Is this convergence absolute?

Ans: The n-th partial sum is $S_{n} := \sum_{k=1}^{n} J_{k} \left(1 - \frac{1}{k^{2}} \right)$ $= \sum_{k=1}^{n} \int_{n} \left(\frac{(k-1)(k+1)}{k^{2}} \right)$ $= \sum_{k=1}^{n} l_{k}(k-1) + \sum_{k=1}^{n} l_{k}(k+1) - 2 \sum_{k=1}^{n} l_{k}(k)$ $= \sum_{k=1}^{n-1} J_n(k) + \sum_{k=2}^{n-1} J_n(k) - 2 \sum_{k=2}^{n} J_n(k)$ $= I_{n}(1) - I_{n}(n-1) + I_{n}(n+1) - I_{n} 2$ $\int_{h} \left(\frac{h+1}{n-1} \right) - \int_{h} 2$

Now $\lim S_n = \lim \left(\int_n \left(\frac{n+1}{n-1} \right) \right) - \int_n 2$ $= l_{n}(1) - l_{n2}$ $= -1_{n2}$

So the series converges to $-\ln 2$ It is also absolutely convergent since $l_{\mu}(1-\frac{1}{h^{2}}) < 0 \quad \forall h \neq 2$

If (a_n) is a decreasing sequence of strictly positive numbers and if $\sum a_n$ is convergent, show that 9. $\lim(na_n) = 0.$ 10. Give an example of a divergent series $\sum a_n$ with (a_n) decreasing and such that $\lim(na_n) = 0$. So lim (n an) = D is only a necessary condition, not a sufficient one Let $a_n = \overline{(n+1)} l_{\mu}(n+1)$. neN. Ans: Then an zo and (an) is decreasing with $\lim_{n \to \infty} (n \alpha_n) = 0$ To see that I an is divergent, we may apply the Integral test. Let $f(x) := \overline{(x+1)} f_0(x+1)$ for $x \neq 1$. Then $\int_{1}^{n} f(x) dx = \int_{1}^{n} \frac{1}{(x+1) \ln (x+1)} dx$ $= \int_{1}^{h} \frac{d(\Lambda(x+i))}{\Lambda(x+i)}$ ln(ln(x+1)) $= \ln \left(l_{h}(n+1) \right) - \ln \left(l_{h} 2 \right)$ $\rightarrow \infty$ as $h \rightarrow \infty$ By Integral test, $\Sigma a_n = \Sigma f(n)$ is divergent

3. Discuss the convergence or the divergence of the series with *n*th term (for sufficiently large *n*) given by (a) $(\ln n)^{-p}$, (c) $(\ln n)^{-\ln n}$, (b) $(\ln n)^{-n}$, (d) $(\ln n)^{-\ln \ln n}$, (e) $(n \ln n)^{-1}$, $(n(\ln n)(\ln \ln n)^2)^{-1}$ (f) c) nth term test: an -o (no conclusion) Aus! Root test : $a_n^{+} = (l_n h)^{-\frac{l_n h}{n}} \rightarrow 1$ (ho conclusion $\left(\begin{array}{c} l_{ih} l_{h} \left(l_{h\chi} \right)^{-\frac{l_{h}}{h}} = l_{ih} \\ \chi \rightarrow \phi \end{array} \right) \xrightarrow{\left(l_{h} \left(l_{h\chi} \right) \right) l_{h\chi}} = O \right)$ Integral test : $\int_{-\infty}^{\infty} (l_n x)^{-l_n x} dx = ?$ Compansion test: $\forall x = e^{2}, x^{x} = (e^{2})^{x}$ $\Rightarrow \forall u = e^{2}, (lnu) = u^{2}$ $\int_{0} \forall n = (lnu)^{-lnn} \leq \frac{1}{h^{2}}$ $\int_{0} \forall n = \frac{1}{h^{2}} = \frac{1}{h^{2}}$ $\int_{0} \forall n = \frac{1}{h^{2}} = \frac{1}{h^{2}}$ $\int_{0} \forall n = \frac{1}{h^{2}} = \frac{1}{h^{2}} = \frac{1}{h^{2}}$